If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2+338.7x-1.6=0
a = 4.9; b = 338.7; c = -1.6;
Δ = b2-4ac
Δ = 338.72-4·4.9·(-1.6)
Δ = 114749.05
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(338.7)-\sqrt{114749.05}}{2*4.9}=\frac{-338.7-\sqrt{114749.05}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(338.7)+\sqrt{114749.05}}{2*4.9}=\frac{-338.7+\sqrt{114749.05}}{9.8} $
| 4(x+2)-2(x-1)=8 | | 9(3x-9)-26x=7 | | 8.6=-7.3+2x | | 338.7x^2+1x-1.6=0 | | -c+2=18+4c-1 | | b+3.7=4.5 | | 5y=235 | | -9+9x+6=x-75 | | 20x+17=1x-18 | | b=3.7=4.5 | | .5x+14=90 | | 18-2y=-4 | | 8x+6+x=180 | | 3.2m+7.45=2.06/3.1 | | 6x+5=2x-17 | | 4.9x^2+1x-1.6=0 | | 27÷b=3 | | x+2=x/5 | | 0.40x+5=6.2 | | 10=7+s | | 6x+12=4×-8 | | (3x+6)/3=x/5 | | 34-9y=4-3y | | r^2+8r-34=50 | | 2+3x-3x=12+2x-2x | | 20-2x=7x+2 | | 4w-5=33 | | 4÷6x-10÷2x=14÷20-6÷4x+2 | | 6(2x)=9(x+1) | | 6x-14=-46 | | 8x+9=10-5 | | 9x+13=3(3x+4 |